Calcolo del termine incognito di una proporzione

Questa semplice applicazione consente di calcolare il termine incognito di una proporzione.

Il termine incognito può essere uno qualsiasi dei quattro termini delle proporzioni che per semplcitità abbiamo indicato con le lettere "A", "B", "C" e "D".

Per indicare all'applicazione qual'è il termine incognito da calcolare basta emplicemente lasciare vuoto il relativo campo ed inserire i valori conosciuti negli altri tre campi della proporzione.

Nota: se inserisci tutti e quatro i termini l'applicazione verifica se la proporzione inserita è rispettata oppure no.

CALCOLO PROPORZIONE
Per calcolare il termine incognito lascia vuoto uno qualsiasi dei termini della proporzione ed inserisci gli altri tre.
: = :
Numero decimali:
Valuta l'applicazione:
5 / 5 (4voti)
Calcolo ProporzioneCalcolo Proporzione sul Tuo Sito?
Copia e incolla il seguente codice html.

Cos'è una proporzione

Una proporzione è una relazione che coinvolge quattro valori numerici.

In particolare una proporzione è la relazione di uguaglianza tra due rapporti (divisione) che può essere rappresentata come segue:

A/B = C/D

Una proporzione è solitamente scritta nel seguente modo:

A : B = C : D

e in linguaggio naturale si legge generalmente così:

"A sta a B" come "C sta a D"

ad indicare appunto che lo stesso rapporto che c'è tra A e B si ritrova anche tra C e D.

Con riferimento alla formula sopra descritta, i termini "A" e "D" sono detti "estremi" della proporzione, in quanto si trovano appunto alle estremità opposte, mentre "B" e "C" sono detti "medi".

Esempio: poniamo A = 100, B = 50, C = 10 e D = 5:
La proporzione è pertanto:

100 : 50 = 10 : 5

ossia "100 sta a 50 come 10 sta a 5".

Proprietà delle Proporzioni

Una volta stabilita la relazione di proporzione tra quattro valori, diventano automaticamente valide tutte le proprietà delle proporzioni di cui elenchiamo quelle principali.

Prodotto

E' la proprietà fondamentale delle proporzioni, utilizzata principalmente per calcolare il termine incognito, e asserisce che il prodotto dei medi è uguale al prodotto degli estermi:

B x C = A x D

Inversione

La proprietà di inversione dice che invertendo i medi con gli estermi la proporzione non cambia.

B : A = D : C

Permutazione degli Estremi

La permutazione degli estremi asserisce che scambiando tra loro i due estermi la proporzione è rispettata.

D : B = C : A

Permutazione dei Medi

Analogamente alla precedente, la proprietà di permutazione dei medi asserisce che scambiando tra loro i medi, la relazione di proporzione rimane valida.

A : C = B : D

Vi sono poi altre proprietà delle proporzioni, più complesse delle precendenti, che elenchiamo brevemente per completezza.

Proprietà del Comporre

La somma del primo termine e del secondo sta al primo come la somma del terzo e quarto termine sta al terzo.

(A + B) : A = (C + D) : C

Analogamente: la somma del primo termine e del secondo sta al secondo come la somma del terzo e quarto termine sta al quarto.

Proprietà dello Scomporre

La differenza fra il primo ed il secondo termine sta al primo come la differenza fra il terzo ed il quarto termine sta al terzo.

(A - B) : A = (C - D) : C

La differenza fra il primo ed il secondo termine sta al secondo come la differenza fra il terzo ed il quarto termine sta al quarto.

Unicità del Quarto Proporzionale

Dati tre termini di una proporzione esiste ed è unico il quarto proporzionale.

Questa proprietà sta alla base della nostra applicazione e asserisce che esiste un unico valore, calcolabile a partire dagli altri tre, che soddisfa la proporzione.
In altri termini, una volta calcolato il termine incognito, siamo sicuri che non può esistere un altro valore in grado di rendere vera la proporzione.

Di seguito un esempio di calcolo del termine incognito.


Esempi di proporzioni e calcolo del termine incognito

Esempio 1: ridimensionamento di un immagine

Ho una fotografia di dimensioni 1600 x 900 pixel (larghezza x altezza) e voglio ridimensionare la larghezza riducendola da 1600 a 1200 pixel e al tempo stesso diminuire l'altezza in modo che sia mantenuto lo stesso aspetto della fotografia originaria, ossia che la proporzione tra le dimensioni originali e quelle ridotte sia la stessa.

Per fare questo scriverò inizialmente una proporzione in linguaggio naturale:

La larghezza originaria (1600) sta all'altezza originaria (900) come la nuova larghezza (1200) sta alla nuova altezza (termine da calcolare).

La proporzione in notazione compatta diventa quindi:

1600 : 900 = 1200 : D

dove abbiamo indicato con D la nuova altezza da calcolare, ossia il termine incognito.

Per la proprietà del prodotto avremo che il prodotto dei medi (900 e 1200) è uguale al prodotto degli estermi (1600 e D):

900 x 1200 = 1600 x D

di cui si ottiene facilmente il termine incognito D, ossia la nuova altezza, nel seguente modo:

D = (900 x 1200) / 1600 = 675

La nuova foto avrà quindi dimensioni 1200 x 675 pixel e rispetterà le proporzioni della fotografia originale.

L' "unicità del quarto proporzionale" ci dice inoltre che non esiste nessun altro valore diverso da 675 che possa soddisfare la proporzione.

Esempio 2: calcolo prezzo

Se ho speso 45 Euro per acquistare 12 pezzi di un prodotto quanto spenderò per comprarne 20?

In questo caso il termine incognito è il prezzo relativo alla nuova quantità di prodotto che mi serve mentre gli altri valori sono tutti noti.

La proporzione sarà quindi:

€ 45 : 12 = C : 20

dove C è il nuovo prezzo da calcolare (in questo esempio il termine incognito è il terzo termine della proporzione).

Per la proprietà del prodotto abbiamo:

C * 12 = € 45 * 20

e quindi:

C = (€ 45 * 20) / 12 = € 75



Note:

Per facilitare le operazioni di "copia e incolla" l'applicazione accetta vari formati numerici:

  • Separatore dei decimali con il punto o con la virgola (esempio: 12345,67 oppure 12345.67).

  • Numeri preceduti dal simbolo dell' Euro (€), con o senza spazio (esempio: €12.345,67 oppure € 12.345,67).

Sito ideato dall' Avvocato Andreani - Ordine degli Avvocati di Massa Carrara - Partita IVA: 00665830451
Pagina generata in 0.025 secondi